ИСПОЛЬЗОВАНИЕ СРЕДСТВ АТЛЕТИЧЕСКОЙ ГИМНАСТИКИ ДЛЯ ФИЗИЧЕСКОГО СОВЕРШЕНСТВОВАНИЯ СТУДЕНТОВ С РАЗНЫМ ТИПОМ ГЕМОДИНАМИКИ

Оляшев Н.В. САФУ имени М.В. Ломоносова, г. Архангельск, Россия

Аннотация. Исследована эффективность построения занятий по дисциплине «Физическая культура» на основе использования средств атлетической гимнастики с учетом развития «ведущего» конституционально обусловленного двигательного качества у студентов с разным типом гемодинамики.

Атлетическая гимнастика как средство физического воспитания студентов, имеет большое значение не только для развития и совершенствования физических качеств, укрепления здоровья, но и служит эффективным средством для развития и совершенствования мышечной структуры тела, улучшения его пропорций [4]. Оздоровительная силовая тренировка создает так называемый анаболический фон в организме, как условие оздоровительного эффекта, в процессе которого решаются задачи повышение силы, увеличение или уменьшение веса тела, улучшение осанки, здоровья и самочувствия занимающихся [3]. Важно, чтобы процесс занятий атлетической гимнастикой был личностно значимым для студентов. Реализация личностно – ориентированного подхода может осуществляться путем применения индивидуальных программ, в разработке которых по заданному преподавателем алгоритму непосредственное участие должны принимать сами студенты. Интерактивная деятельность будет способствовать самоактуализации студентов с отчетливым осознанием поставленной цели и путей ее достижения при занятиях физической культурой, потребности к саморазвитию и самостоятельному изучению необходимой для решения поставленных целей литературы [8].

Кроме того, установлено, что имеются различия у лиц, относящихся к различным гемодинамическим типам, обусловленные генетическими, конституциональными, возрастными особенностями. По мнению ряда авторов, любой тип гемодинамики, обеспечивает возможность получения биологически полноценного полезного конечного результата действия. Однако, «физиологическая стоимость» достижения результата в типах различна. Поэтому повышение эффективности оздоровительнотренировочных занятий студентов на основе учета конституциональных особенностей их организма является перспективным [1, 2].

Цель исследования: оценить эффективность занятий физической культурой на основе использования средств атлетической гимнастики, по-

строенных с учетом типа гемодинамики, в рамках программы по физической культуре.

Материалы и методы. Базой исследования являлся ФГАОУ ВПО Северный (Арктический) федеральный университет имени М.В. Ломоносова (г. Архангельск). В исследовании участвовали 312 студентов-юношей в возрасте18,08±0,08 лет, относящиеся по состоянию здоровья к основной медицинской группе здоровья. Тип кровообращения определяли по показателю удельного минутного объема кровообращения (УМОК) [5]. На основе анализа полученных данных по типу гемодинамики все испытуемые были разделены на 3 группы: 1 группа − с гиперкинетическим типом кровообращения (ГрКТ) (n=149 человек) при УМОК>110 %; во вторую группу вошли студенты эукинетического типа кровообращения (ЭуКТ) с показателями УМОК, находящимися в пределах 90-110 % (n=115 чел.); третью группу составили студенты гипокинетического типа кровообращения (ГпКТ) при УМОК<90 % (n=48 человек).

Для студентов с разным типом гемодинамики были выбраны 3 режима тренировки с преимущественной направленностью на развитие «ведущих» физических качеств (табл. 1).

Таблица 1 - Общая характеристика обследованных групп

Группы	Режимы тренировочных занятий	Исследования в ди- намике (число об- следованных)		
		1-e	2-е	
ГрКТ (1)	Атлетическая гимнастика с преимуще- ственной направленностью на развитие быстроты	149	149	
ЭуКТ (2)	Атлетическая гимнастика с преимуще- ственной направленностью на развитие скоростно-силовых качеств	115	115	
ГпКТ (3)	Атлетическая гимнастика с преимуще- ственной направленностью на развитие выносливости	48	48	
	Итого		624	

До и после эксперимента было проведено тестирование двигательных качеств в следующих упражнениях: прыжок в длину с места (см), подтягивание (раз), бег 100 м (с), бег 3000 м (с), челночный бег 3x10 м (с), индекс гибкости (усл.ед), отжимание от пола (раз).

Математическая обработка полученных данных выполнена на основе статистических программ «StatSoft Statistica v6.0 Rus». Различия считали статистически значимыми при уровне p<0,05 [6].

Результаты исследования и их обсуждение. Последние исследования, посвященные изучению физического и функционального потенциала

студентов с разным типом гемодинамики, указывают, что у лиц с ГрКТ кровообращения имеется конституционально обусловленная склонность к проявлению быстроты, у лиц с ЭуКТ – к работе скоростно-силовой направленности, а лица с ГпКТ способны к выполнению длительной физической работы (общая выносливость) [1, 2, 7]. В наших исследованиях данные предположения нашли свое подтверждения - студенты с ГрКТ кровообращения показали максимальные результаты в тестах на координацию, в беге на 100 метров; у лиц с ЭуКТ зафиксирован максимальный результат в отжимании от пола, в подтягивании, в прыжках в длину с места. Соответственно, студенты с ГпКТ кровообращения занимали лидирующие позиции в тесте на общую выносливость.

Таблица 2 - Динамика показателей физических качеств у студентов

с разным типом гемодинамики, (Ms)

Физические каче- ства	Группы	сентябрь	май	p	%
Скоростно-силовые	1	$2,17\pm3,13$	2,28±2,35	-	5,06
качества (прыжок в	2	$2,22\pm3,89$	2,38±4,14	p<0,05	7,20
длину с места, см)	3	2,14±3,03	2,22±3,82	-	3,73
Силовая выносли-	1	9,3±1,18	11,4±1,22	p<0,001	22,5 8
вость мышц верхних ко- нечностей (подтяги-	2	10,4±1,12	12,3±1,24	p<0,001	18,2 6
вание, раз)	3	9,4±1,11	10,9±1,19	p<0,001	15,9 5
Общая выносли-	1	13,10±0,2 5	12,10±0,32	p<0,05	-7,63
вость (бег 3000 метров,	2	13,44±0,3 7	13,08±0,22	1	-2,67
мин,сек)	3	12,31±0,3 8	11,13±0,46	p<0,001	-9,58
Скоростные каче-	1	$13,2\pm 0,24$	$12,3\pm0,19$	p<0,05	-6,81
ства (бег 100 метров,	2	$13,8 \pm 0,28$	$13,2\pm0,18$	p<0,05	-4,34
сек)	3	$14,0\pm 0,22$	$13,6\pm0,20$	-	-2,85
Координация (чел-	1	$7,9\pm0,21$	$7,4\pm0,18$	p<0,05	-6,32
ночный бег 3х10 м,	2	8,4±0,18	$7,9\pm0,13$	p<0,05	-5,95
сек)	3	$8,7\pm0,22$	$8,4\pm0,17$	-	-3,44
	1	$0,36\pm0,02$	$0,39\pm0,01$	p<0,05	8,33
Индекс гибкости (усл. ед.)	2	0,35±0,03	$0,40\pm0,02$	p<0,001	14,2 8
	3	$0,38\pm0,03$	0,41±0,02	p<0,05	7,89
Силовая выносли- вость	1	38,31±2,1 3	43,22±2,51	p<0,001	12,8 1

мышц верхних ко- нечностей (отжима-	2	42,4±3,03	53,2±2,13	p<0,001	25,4 7
ние от пола, раз)	3	33,84±2,7 9	39,52±1,84	p<0,001	16,7

После начального этапа тестирования двигательных качеств в течение учебного года у студентов проводились занятия на преимущественное развитие «ведущего» физического качества. Такая направленность, по мнению ряда авторов, наиболее эффективна для физического совершенствования. Стоит отметить, что данный факт так же нашел подтверждение в нашей работе - направленность тренировок на развитие генетически запрограммированных «ведущих» физических качеств способствовало улучшению общего двигательного потенциала, т.е. улучшение в тестах, на развитие которых специальных тренировок не проводилось.

Так, выявлено увеличение силовых показателей в группе атлетической гимнастики с преимущественной направленностью на развитие быстроты (1 группа) (табл. 3). Показатели динамометрии в перечисленных упражнениях выросли на 5-7% (р<0,05). В группе атлетической гимнастики с преимущественной направленностью на развитие скоростно-силовых качеств (2 группа) показатели кистевой динамометрии увеличились на 7-9% (p<0,05). В данной группе зафиксирован максимальный прирост по показателям становой тяги. В группе атлетической гимнастики с преимущественной направленностью на развитие общей выносливости (3 группа) результаты выросли на 7-15%. Несмотря на кажущееся, на первый взгляд, «обкрадывание» силовых тренировок за счет увеличения нагрузки аэробной направленности, в данной группе мы наблюдали выраженный положительный эффект. Возможно, данный эффект – рост силовых характеристик - связан с тем, что упражнения на выносливость способствуют увеличению количества митохондрий, что в сочетании с силовой нагрузкой, пусть и не такой значительной в весовом эквиваленте как в двух других группах, оказывает больший положительный эффект на развитие силового потенциала организма, чем силовая нагрузка в анаэробном и анаэробно-аэробном режимах.

Таблица 3 - Динамика показателей физиометрического обследования студентов с разным типом кровообращения, (Ms)

Показа-	ГрКТ (1) n=149 чел.		ЭуКТ (2) n=115 чел.		ГпКТ (3) n=48 чел.	
тели	сентябрь	май	сентябрь	май	сен- тябрь	май
СК пр,	42,22	44,30*	44,33	48,48*	41,17	47,94**
КГ	±1,56	$\pm 1,41$	±1,99	$\pm 1,69$	$\pm 1,83$	±1,56
СК лев,	39,75	41,56*	40,86	44,09*	37,87	44,66**
кг	±1,65	$\pm 1,29$	±1,95	$\pm 1,84$	$\pm 1,88$	±1,58

Сумма,	81,97	85,86*	85,19	92,57*	79,04	92,60**
КГ	±1,14	±1,56	$\pm 2,81$	$\pm 3,40$	$\pm 3,46$	±2,97
Стано-	120,17±3	131,23±3,	129,22±2	138,34±2,	112,4±4	124,56±3,
вая си-	,41	14*	,56	86*	,41	14*
ла, кг						

Примечание: * p<0,05; ** p<0,05.

Таким образом, проведенное исследование показало, что построение учебных занятий по дисциплине «Физическая культура» на основе использования средств атлетической гимнастики и с учетом типа гемодинамики, повышает эффективность учебно-тренировочного процесса, проявляющуюся в улучшении двигательных показателей не только в тестах, к которым студент согласно своего конституционально обусловленного типа имеет моторную одаренность, но и в тестах, к которым по своему генотипу не предрасположен.

Литература:

- 1. Варенцова И.А. Состояние кардиореспираторной системы у студентов с разным типом гемодинамики: автореф. ... канд. биол. наук / И.А. Варенцова. Архангельск, 2013. 18 с.
- 2. Волненко Н.Г. Методика развития физических качеств у студенток нефизкультурного вуза с учетом гемодинамики: автореф. ... канд. пед. наук / Н.Г. Волненко. Белгород, 2011. 26 с.
- 3. Жичкина А.Е. Атлетическая подготовка в тренажерном зале / А.Е. Жичкина. Харьков: Изд-во ХГПУ, 1996. 73 с.
- 4. Кочнев А.В. Физическое состояние студенток при оздоровительнотренировочных занятиях атлетической гимнастикой на начальном этапе обучения в вузе: автореф. ... канд. биол. наук / А.В. Кочнев. Архангельск, 2007. 21 с.
- 5. Наследов А. Д. Математические методы психологического исследования. Анализ и интерпретация данных / А.Д. Наследов. СПб. : Речь, 2012. 392 с.
- 6. Терегулов Ю. Э. К методике определения типов центральной гемодинамики в клинической практике / Ю. Э. Терегулов // Практическая медицина. -2011.- № 4.- C.138-140.
- 7. Халявкина И. О. Сравнительная характеристика гемодинамических реакций у юношей с разными типами регуляции кровообращения / И. О. Халявкина, О. В. Гнездилова, Е. Н. Пономарева, Я. А. Хананашвили // Кубанский научный медицинский вестник. 2011. № 3 (126). С. 182—185.
- 8. Яшина Т.А. Оптимизация нагрузок при рекреационных занятиях с отягощениями: автореф. ... канд. пед. наук / Т.А. Яшина. СПб, 1998. 23 с.