ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ХИМИИ В ФГБОУ ВПО «ГОСУНИВЕРСИТЕТ – УНПК» В 2014 ГОДУ

Часть I. Основы теоретической химии

Предмет химии. Место химии в естествознании. Масса и энергия. Основные понятия химии. Вещество. Молекула. Атом. Электрон. Ион. Химический элемент. Химическая формула. Относительная атомная и молекулярная масса. Моль. Молярная масса.

Химические превращения. Закон сохранения массы и энергии. Закон постоянства состава. Стехиометрия.

Строение атома. Атомное ядро. Изотопы.

Периодический закон Д.И.Менделеева и его обоснование с точки зрения электронного строения атомов. Периодическая система элементов.

Химическая связь. Типы химических связей: ковалентная, ионная, металлическая, водородная. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Кратные связи. Модель гибридизации орбиталей.

Валентность и степень окисления. Структурные формулы. Изомерия. Виды изомерии, структурная и пространственная изомерия.

Агрегатные состояния вещества и переходы между ними в зависимости от температуры и давления. Газы. Газовые законы. Уравнение Клайперона-Менделеева. Закон Авогадро, молярный объем. Жидкости. Ассоциация молекул в жидкостях. Твердые тела.

Классификация и номенклатура химических веществ. Индивидуальные вещества, смеси, растворы. Простые вещества, аллотропия. Металлы и неметаллы. Сложные вещества. Основные классы неорганических веществ: оксиды, основания, кислоты, соли. Основные классы органических веществ: углеводороды, галоген-, кислородсодержащие вещества. Карбо- и гетероциклы.

Химические реакции и их классификация. Типы разрыва химических связей. Гомо- и гетеролитические реакции. Окислительно-восстановительные реакции.

Тепловые эффекты химических реакций. Термохимические уравнения. Теплота образования химических соединений. Закон Гесса и его следствия.

Скорость химической реакции. Представление о механизмах химических реакций. Элементарная стадия реакции. Гомогенные и гетерогенные реакции. Зависимость скорости гомогенных реакций от концентрации (закон действующих масс). Константа скорости химической реакции, ее зависимость от температуры.

Явление катализа. Катализаторы.

Обратимые реакции. Химическое равновесие. Константа равновесия, степень превращения. Смещение химического равновесия под действием температуры и давления (концентрации). Принцип Ле Шателье.

Растворы. Механизм образования растворов. Растворимость веществ и ее зависимость от температуры и природы растворителя. Способы выражения концентрации растворов: массовая доля, мольная доля, молярная

концентрация, объемная доля. Отличие физических свойств раствора от свойств растворителя. Твердые растворы. Сплавы.

Электролиты. Растворы электролитов. Электролитическая диссоциация кислот, оснований и солей. Кислотно-основные взаимодействия в растворах. Амфотерность. Константа диссоциации. Степень диссоциации. Ионное произведение воды. Водородный показатель. Гидролиз солей. Равновесие между ионами в растворе и твердой фазой. Произведение растворимости. Ионные уравнения реакций.

Окислительно-восстановительные реакции в растворах. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Стандартные потенциалы окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Электролиз растворов и расплавов. Законы электролиза Фарадея.

Часть II. Элементы и их соединения.

Неорганическая химия

Абитуриенты должны на основании Периодического закона давать сравнительную характеристику элементов в группах и периодах. Характеристика элементов включает: электронные конфигурации атома; возможные валентности и степени окисления элемента в соединениях; формы простых веществ и основные типы соединений, их физические и химические свойства.

Водород. Изотопы водорода. Соединения водорода с металлами и неметаллами. Вода. Пероксид водорода.

Галогены. Галогеноводороды. Галогениды.

Кислород. Оксиды и пероксиды. Озон.

Сера. Сероводород, сульфиды. Оксиды серы (IV) и (VI). Сернистая и серная кислоты и их соли.

Азот. Аммиак, соли аммония. Оксиды азота. Азотистая и азотная кислоты и их соли.

Фосфор. Фосфин, фосфиды. Окисды фосфора (III) и (V). Орто-, мета- и дифосфорная кислоты. Ортофосфаты.

Углерод. Изотопы углерода. Простейшие углеводороды: метан, этилен, ацетилен. Карбиды кальция, алюминия и железа. Оксиды углерода (II) и (IV). Угольная кислота и ее соли.

Кремний. Силан. Силицид магния. Оксид кремния (IV). Кремнивые кислоты, силикаты.

Бор. Орто- и тетраборная кислоты. Тетраборат натрия.

Благородные газы.

Щелочные металлы. Оксиды, пероксиды, гидроксиды и соли щелочных металлов.

Щелочноземельные металлы, бериллий, магний: их оксиды, гидроксиды и соли.

Алюминий. Оксид, гидроксид и соли алюминия. Комплексные соединения алюминия.

Медь, серебро. Оксиды меди (I) и (II), оксид серебра (I). Гидрооксид меди (II). Соли серебра и меди. Комплексные соединения серебра и меди.

Цинк, ртуть. Оксиды цинка и ртути. Гидроксид цинка и его соли.

Хром. Оксиды хрома (II), (III) и (VI). Гидрооксиды и соли хрома (II) и (III). Хроматы и дихроматы (VI).

Марганец. Оксиды марганца (II) и (IV). Гидрооксид и соли марганца (II). Перманганат калия.

Железо, кобальт, никель. Оксиды железа (II), (II)-(III) и (III). Гидроксиды и соли железа (II) и (III).

Органическая химия

Характеристика каждого класса органических соединений включает: особенности электронного и пространственного строения соединений данного класса, закономерности изменения физических и химических свойств в гомологическом ряду, номенклатуру, виды изомерии, основные типы химических реакций и их механизмы. Характеристика конкретных соединений включает физические и химические свойства, области применения. При описании химических свойств необходимо учитывать реакции с участием как радикала, так и функциональной группы.

Структурная теория как основа органической химии. Углеродный скелет. Функциональная группа. Гомологические ряды. Изомерия: структурная и пространственная. Представление об оптической изомерии. Взаимное влияние атомов в молекуле. Классификация органических реакций по механизму и заряду активных частиц.

Алканы и циклоалканы.

Алкены и циклоалкены. Сопряженные диены.

Алкины. Кислотные свойства алкинов.

Ароматические углеводороды (арены). Бензол и его гомологи. Стирол. Реакции ароматической системы и углеводородного радикала. Ориентирующее действие заместителей в бензольном кольце (ориентанты I и II рода).

Спирты простые и многоатомные. Первичные, вторичные и третичные спирты. Фенолы. Простые эфиры.

Карбонильные соединения: альдегиды и кетоны. Предельные и ароматические альдегиды.

Карбоновые кислоты. Предельные, непредельные и ароматические кислоты. Жиры.

Нитросоединения: нитрометан, нитробензол.

Амины. Алифатические и ароматические амины. Первичные, вторичные и третичные амины. Основность аминов. Четвертичные аммониевые соли и основания.

Углеводы. Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Циклические формы моносахаридов. Понятие о пространственных изомерах

углеводов. Дисахариды: целлобиоза, мальтоза, сахароза. Полисахариды: крахмал, целлюлоза.

Реакции полимеризации и поликонденсации. Отдельные типы высокомолекулярных соединений: полиэтилен, полипропилен, полистирол, поливинилхлорид, политетрафторэтилен, каучуки, сополимеры, фенолформальдегидные смолы, искусственные и синтетические волокна.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. Современный курс для поступающих в вузы. М.: Экзамен, 1998-2006.
- 2. Кузьменко Н.Е., Еремин В.В., Попков В.А. Химия для школьников старших классов и поступающих в вузы. М.: Дрофа, 1995-2000; Мир и образование, 2004.
- 3. Кузьменко Н.Е., Еремин В.В. 2500 задач по химии для школьников и абитуриентов. М.: Мир и образование, 2004.
- 4. Химия: Справочные материалы / Под ред. Ю.Д.Третьякова. М.: Астрель, 2002.
- 5. Еремина Е.А., Рыжова О.Н. Краткий справочник по химии для школьников. М.: Мир и образование, 2002-2006.
- 6. Химия. Большой справочник для школьников и поступающих в ВУЗы. М.: Дрофа, 1999-2001.
- 7. Кузьменко Н.Е., Еремин В.В., Чуранов С.С. Сборник конкурсных задач по химии. М.: Экзамен, 2001, 2002, 2005.
- 8. Фримантл М. Химия в действии. В 2-х ч. М.: Мир, 1991, 1998.
- 9. Еремин В.В., Дроздов А.А., Кузьменко Н.Е., Лунин В.В. Учебник по химии для 8-9 классов общеобразовательных школ. М.: Мир и образование, 2004-2006.