В Диссертационный совет Д999.115.03 при ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева», ФГАОУ ВО «Белгородский государственный национальный исследовательский университет», ФГБОУ ВО «Липецкий государственный технический университет»

ОТЗЫВ

официального оппонента д.т.н. Лавриненко Ю.А. на диссертацию Зайцева Алексея Ивановича «Разработка процессов гибки труб с осевым сжатием в пределах допустимого волнообразования», представленную на соискание ученой степени кандидата технических наук по специальности 05.02.09 – Технологии и машины обработки давлением.

Актуальность работы. Гибка труб с осевым сжатием находит все большее применение, позволяя улучшать качество изделий по показателям утонения сечений. стенки И овальности Современные модели трубогибочного оборудования оснащают устройствами дозированного сжатия зоны деформирования. Эффективность их применения сдерживается отсутствием надежных критериев устойчивости изгибаемых труб, начальное нарушение которой в виде слабого волнообразования вообще не изучалось, несмотря на то, что оно допускается техническими требованиями к трубопроводам и другим изделиям. Работа Зайцева А.И. направлена на восполнение указанного пробела, в ней сформулированы и решены задачи теоретического и практического плана:

- разработать математическую модель гибки трубы моментом с монотонным развитием волнистости в области сжатия, а также методику ее практического использования для оценки высоты слабо выраженных волн.

- выполнить теоретический анализ гибки труб отклоняющим роликом и неприводным водилом с определением допустимых углов его поворота, ограниченных реверсом деформаций.
- разработать методику инженерного расчета осевой силы и подачи при гибке труб проталкиванием через зону деформирования;
- разработать методику проектирования процессов гибки труб с осевым сжатием и усовершенствовать их техническое оснащение.

Содержание работы. Диссертация состоит из введения, основной части, включающей пять разделов, заключения и списка использованных источников в количестве 53. Общее число страниц 118, рисунков — 41, таблиц — 7.

В первом разделе большое место занимает анализ публикаций по устойчивости тонкостенных труб, содержащих теоретические и экспериментальные исследования процесса гибки. Отмечается их односторонний характер, при котором констатируется эффект бифуркации, в то время как предшествующая стадия — образование слабовыраженной волнистости стенки трубы остается не исследованной.

Во втором разделе выполнено математическое моделирование пластического изгиба трубы с монотонно возрастающей волнистостью. Волнообразование увеличивает работу внутренних сил при одновременном уменьшении сопротивления внешнему моменту. Высота волн находится из условия стационарного значения полной потенциальной энергии и подсчитывается методом последовательных приближений. Ее рассчитанные значения находятся в прямой зависимости от диаметра трубы и обратной – от радиуса изогнутой оси, возрастая пропорционально заданной силе осевого сжатия. Предложена методика практического прогнозирования высоты волн без применения метода последовательных приближений – по принципу: больше или меньше допустимой.

В разработанной математической модели отсутствует механизм запуска процесса волнообразования. Принята гипотеза, согласно которой

волны бесконечно малой высоты возникают одновременно с началом искривления оси трубы — по аналогии с неравномерностью удлинения образца при испытании на растяжение. Оба процесса остаются устойчивыми, пока высота волн и неравномерность растяжения увеличиваются монотонно.

Третий раздел посвящен анализу схем гибки на большой радиус посредством проталкивания трубы через зону деформирования. В этом случае осевое сжатие носит непреднамеренный характер и может быть установлено из баланса работ внешних и внутренних сил. Основная проблема заключается в не стационарности размеров зоны деформирования при гибке водилом. Математическое моделирование процесса потребовало априорного наложения ограничений на его неизвестные геометрические параметры. Предложена аппроксимирующая функция, связывающая кривизну оси трубы, переменную во времени и пространстве, с углом поворота водила, а также уравнения для определения перемещения проталкиваемой заготовки и потребной внешней силы.

Расчеты показали, что по достижении определенного угла поворота водила порядка 60° в изогнутом участке трубы появляется очаг разгрузки. Его эволюция при дальнейшем увеличении угла приводит к появлению пластических деформаций обратного, по сравнению с гибкой, знака.

В четвертом разделе представлена упрощенная методика инженерного расчета гибки водилом с определением подачи трубы и толкающей силы. Использовалась упрощенная аппроксимация оси изогнутого участка дугой окружности или двумя сопрягающимися дугами, радиусы и углы которых подсчитывались по окончательным размерам зоны гибки. Полученная оценка силы оказалась завышенной примерно на 10%, по сравнению с моделированием изогнутой оси переменной кривизны. Длина участка трубы, заранее размещаемого в зоне деформирования, влияет на размеры изгибаемого участка, полученные формулы связывают ее обратной зависимостью с рассчитанной подачей.

В пятом разделе дано описание экспериментальной гибки труб с осевым сжатием. Она выполнялась на лабораторной установке с гидравлической системой возбуждения силы, толкающей опытный образец в направлении зоны деформирования. В области сжимающих напряжений возникали волны высотой до 0,12 мм, возрастающей с увеличением силы осевого сжатия, при этом зарегистрировано уменьшение утонения стенки в области растяжения. Совершенно очевидно, что эксперименты не позволяют зафиксировать наличие волн как угодно малой высоты. Поэтому принятую в диссертации гипотезу их зарождения в начальный момент изгиба трубы нельзя подтвердить или опровергнуть.

При гибке с осевым сжатием по схеме наматывания на круглый копир момент толкающей силы может вызвать реверсивные деформации вплоть до частичной разгибки трубы. Для решения данной проблемы предлагается устройство с опорным роликом, защищенное патентом Российской Федерации на изобретение.

Совокупность разработанных расчетных методик обеспечивает проектирование технологических процессов гибки труб с осевым сжатием, учитывающее ограничения волнообразования согласно техническим требованиям к трубопроводам, а также предельно допустимые реверсивные деформации в окрестностях замка копира или водила.

Автореферат диссертации идентичен ее содержанию и включает список работ автора: 5 статей в рецензируемых изданиях, 1 патент, 3 публикации в материалах конференций.

Научная новизна работы и ее теоретическая значимость заключаются:

- в определении высоты слабовыраженных волн при изгибе трубы моментом с возможным приложением осевого сжатия,
- в аналитическом решении задачи статической неопределимости гибки трубы моментом, с зоной деформирования стесненной положением отклоняющего ролика или неприводным водилом,

-в разработке научно обоснованной методике инженерного расчета при гибке отклоняющим роликом и водилом с аппроксимацией изогнутого участка трубы,

-в разработке научно обоснованной методики проектирования технологических процессов гибки труб с осевым сжатием, учитывающей ограничения волнообразования согласно техническим требованиям к трубопроводам, а также предельно допустимые реверсивные деформации.

При этом разработанная математическая модель слабовыраженного волнообразования при изгибе трубы моментом и аналитическое решение задачи статически неопределимого равновесия трубы, изгибаемой водилом, вносят значительный вклад в теорию гибки труб.

Практическая ценность результатов исследования заключается в том, что разработана научно обоснованная методика расчета подачи трубы и проталкивающей силы при гибке водилом, применимая в инженерных расчетах гибки трубы с фиксированными параметрами или по заданным габаритам изогнутого участка трубы при проектировании и эксплуатации трубогибочного оборудования.

Разработана методика проектирования технологических процессов гибки труб проталкиванием через зону деформирования или наматыванием на копир с осевым сжатием, учитывающая ограничения волнообразования согласно техническим требованиям к трубопроводам

Достоверность результатов работы, обоснованность выводов и рекомендаций обеспечивается корректным применением энергетического подхода в теоретическом анализе изгиба труб с образованием волнистости; использованием аппроксимаций в разработанных математических моделях, которые носят обоснованный характер.

Замечания по работе.

1. Не приводятся требования к материалам и трубным заготовкам, видам труб, их состоянию перед гибкой. Какие трубы можно применять для

гибки: стальные бесшовные холоднодеформированные или теплодеформированные, электросварные прямошовные, или другие? Из каких материалов трубные заготовки? Не показана область применения разработанного Вами процесса гибки труб.

- 2. Какие станки применяется в современном трубогибочном производстве? Их модели, технические характеристики?
- 3. Не приводится обоснование выбора схемы одноосного напряженного состояния в расчетах процесса гибки
- 4. При моделировании изгиба трубы моментом не учитывается упрочнение материала при изменении степени деформации при изгибе и, следовательно, напряжения текучести
- 5. Не показана допускаемая степень деформации при гибке крутоизогнутых труб на малые радиусы
- 6. Не указаны названия элементов на рисунке 40
- 7. Не приводятся экспериментальные данные, подтверждающие теоретические расчеты, приведенные на рисунках 14 и 15. Не обоснована их правильность. Экспериментальная гибка трубы с осевым сжатием выполнялась наматыванием на круглый копир, а теоретический расчет относится к изгибу моментом.
- 8. Данные опытной гибки, представленные графиками на рисунках 37, 38, следовало бы оценить на предмет соответствия теоретическим результатам.

Соответствие диссертации паспорту специальности 05.02.09 — Технологии и машины обработки давлением.

Изучены закономерности волнообразования при гибке труб с целью улучшение качества изогнутых заготовок трубопроводов, которое достигается осевым сжатием зоны деформирования в установленных пределах. Получена оценка деформированного состояния изогнутой трубы с учетом слабо выраженной волнистости стенки в области сжимающих напряжений.

Заключение. Диссертация Зайцева Алексея Ивановича «Разработка процессов гибки труб с осевым сжатием в пределах допустимого волнообразования» является научно-квалификационной работой, в которой содержится решение задачи определения высоты слабо выраженных волн при изгибе трубы моментом с приложением осевого сжатия, имеющей значение для развития теории гибки труб и совершенствования производства трубопроводов машиностроительного назначения.

Решения основной и вспомогательных задач аргументированы автором диссертации. Научные результаты диссертации опубликованы в рецензируемых изданиях, одно из технических решений защищено патентом Российской Федерации на изобретение. Работа отвечает критериям п. 9 Положения ВАК о порядке присуждения ученых степеней, а ее автор Зайцев Алексей Иванович заслуживает присуждения ученой степени кандидата технических наук по специальности 05.02.09 — Технологии и машины обработки давлением.

Официальный оппонент доктор технических наук, заведующий отделом стандартизации продукции АМТС Центра «Стандартизация и идентификация» Государственного научного центра Российской Федерации Федеральное государственное унитарное предприятие «Центральный научно-исследовательский институт (ГНЦ РФ ФГУП «НАМИ»)

Лавриненко Юрий Андреевич

125438 Москва, Автомоторная ул., дом № 2

Тел. +7 (495) 456-45-39

Email: <u>lavrinenko52@mail.ru</u>

Докторская диссертация по специальности 05.02.09 — Технологии и машины обработки давлением

Подпись Ю.А. Лавриненко заверяю

